July 2013 night sky guide podcast, transcript and sky chart

July 2013 night sky guide podcast, transcript and sky chart

Published by Sydney Observatory on June 26, 2013 5 Comments

To help you learn about the southern night sky, Sydney Observatory provides an audio guide/podcast, transcript of that audio, and a sky map or chart each month. This month’s guide is presented by Dr Nick Lomb, Sydney Observatory’s Curator of Astronomy.

Nick guides us through July stars, constellations and a globular cluster, and also includes intriguing facts such as this: if Antares (the star that is the heart of the Scorpion) were in the position of our Sun, it would engulf not only Earth but also Mars. Lucky for us it’s where it is, in Scorpius. Nick’s tour of the stars also refers to some ancient Greek myths that related to the sky.

There is quite a choice of planets you can find this month with Nick’s help, some at night, some early in the morning. To find out when and where to look for Mercury, Venus, Saturn, Mars and Jupiter, listen to the audio, or read the transcript below.

HEAR THE AUDIO
You can subscribe with iTunes or upload the (28 mins) audio to your iPod or mp3 player, or listen to it on your computer.

SEE THE SKY CHART
We provide an embedded sky map (below) and a July 2013 night sky chart as a printable PDF which shows the stars, constellations and planets visible in the night sky from anywhere in Australia. To view PDF star charts you will need to download and install Adobe Acrobat Reader if it’s not on your computer already.

July 2013 night sky chart

BUY THE BOOK
Our annual book, ‘The 2013 Australasian sky guide’, by Dr Nick Lomb has more information and star maps for months from December 2012 until December 2013 inclusive, plus information about the Sun, twilight, the Moon and tides, and a host of other fascinating astronomical information. You can purchase it ($16.95) at Sydney Observatory and Powerhouse Museum shops or other good bookshops, or online through Powerhouse Publishing (additional packing/postage costs apply).

READ THE TRANSCRIPT (after the jump)

Transcript of the July 2013 monthly sky guide audio

This is a guide to the night sky in July. My name is Nick Lomb. I’m Curator of Astronomy at Sydney Observatory and the Powerhouse Museum. You can find this broadcast on the Sydney Observatory website, which is at www.sydneyobservatory.com.au, and look in the astronomy section. If you’d like to become familiar with the night sky, what you need to do is download the map associated with this podcast. Simply download it in PDF and then print it out and take it outside with you. Of course, being July, being winter, dress warmly because it can be fairly cool at night.

What you also need with you is a torchlight, and ideally one with a red light, since red does not destroy your adaptation to the night sky. With a red light, you can look at the map and look up in the night sky. If you do not have a red torch, put a little bit of red cellophane in front of an ordinary white torch. That will give you a red light to be able to look at both the map and the night sky.

It would also help if you’re familiar with the cardinal directions, that is, north, west, south and east. You need to know where they are with respect to your location. East is, of course, where the Sun rises. West is where the Sun sets. With those, you get a fairly good indication. As well, at 12:00 noon, the Sun is approximately due north.

Let us begin our tour of the night sky in July. We’ll start in the east where we can see the familiar sight of the constellation of Scorpius, the Scorpion. This is a welcome sight, visible in the Australian winter. It’s a very obvious constellation. It is one of the few really bright and easy to find constellations, and it is an excellent signpost to the night sky.

Scorpius is a long curving line of bright stars. At this time of the year, it’s in the eastern sky with the claws of the scorpion high up and a little bit towards the north. The actual sting, or tail, of the Scorpion is towards the south. In the middle of the Scorpion, we find the red star Antares which represents the heart of the Scorpion. Antares is a huge star.

Its name Antares means ‘rival of Mars’. The reason for the name is because Antares is a similar reddish colour to the planet Mars. Occasionally, Mars passes Antares close by, and the two can be seen to be very similar reddish objects close together in the night sky, and that is a very impressive sight when that happens.

Antares is a giant star. It is relatively cool with a surface temperature of around 3,000 degrees Celsius. This may sound like a lot. But compared to our own Sun, which has a temperature of around 5,500 degrees Celsius, it is relatively cool. It is that coolness which gives it its red colour. Because it’s such a huge star, even though it’s relatively cool, it still puts out a huge amount of light. It appears like a bright star in the sky even though it is 600 light years from us. Light has taken 600 years to reach us from the star Antares.

The star is so large that, if you replaced our own Sun by Antares…I should add, at this point, that nobody would want that to happen, then the Earth would be engulfed by Antares, as would the planet Mars and many of the asteroids – the rocky objects that circle the Sun between the paths of Mars and Jupiter. Jupiter would be just outside Antares but not very far from it. The solar system would be a very different place, and it would not be a hospitable place for human beings if Antares replaced the Sun.

Antares has a companion star that circles around it. This is a hot star so there is quite a contrast between the two of them. The companion star has a temperature somewhere around 18,000 degrees Celsius and it has a bluish colour. If people look at those two stars together, the ruddy Antares and the blue companion star, they sometimes describe the companion star as green. This seems to be due to some kind of contrast effect in our eyes.

The companion star appears small compared to huge Antares. In reality, it is larger than our own Sun. It is something like four times wider than our own Sun, and it has a mass of about 10 times that of our own Sun. It is 2,000 times as bright as the Sun. We do not, as yet, know how long the companion star takes to circle around Antares. The current estimate is that it would take something like 1,000 years.

Now let us move to the eastern part of the sky, from Scorpius the Scorpion, to the north. If we face north and look up, the most obvious star that we can see is a star called Arcturus. This star is part of the constellation Boötes, which is the Herdsman. Arcturus means ‘Bear Watcher’. Arcturus is one of the brightest stars in the sky. It is the fourth brightest star in the sky. It is the brightest star in the Northern Hemisphere as seen from the Northern Hemisphere. It is a slightly orange coloured star, at a distance of 37 light years from us. It is closer than Antares which, as you recall, is 600 light years away. But just like Antares, it appears like a bright star in the sky.

Arcturus is an interesting star for a variety of reasons. One of them is that it moves around the centre of our own galaxy a little bit slower than our star, the Sun. Of course, we on Earth move around the centre of our own galaxy together with the Sun. Arcturus is believed to be a somewhat older star than our own Sun. It comes from an older generation of stars in the galaxy.

There has been a suggestion which may or may not be true, but it’s still an intriguing one, that Arcturus does not come from our galaxy, but comes from a small galaxy that merged with our own many thousands of millions of years ago. This would explain why Arcturus has a different motion to other stars in this part of the galaxy, as it is moving a little bit more slowly around the centre.

Let us move now to face west. The most obvious star that we can see is a star called Regulus. Regulus is towards the west and a little bit towards the right and somewhat towards the north. That is, it is in the north-west. The name Regulus means ‘Little King’. It is 77 light years away. Intrinsically, it gives off something like 100 times as much light as our own Sun. It is a fairly hot star, 12,000 degrees Celsius. This compares, if you recall, with our own Sun, which has a temperature of about 5,500 degrees.

Regulus is a star right on the ecliptic, right on the paths of the planets and the Sun and the Moon as they move along the sky. Consequently, Regulus can be occulted, or covered by the Moon and that is an event that is fairly common. Regulus also has a companion star circling around it. It’s a fairly low mass star which is a long way away from Regulus.

This companion star is roughly 4,000 times as far away from Regulus as the Earth is from the Sun. This large distance means that the companion star circles around the main star of Regulus very slowly. It is believed that it would take at least 100,000 years for the companion star of Regulus to circle around it.

Unfortunately, none of us are going to be around to see that complete circuit be finished, but people in a distant future will be estimating the exact period. For the moment, all we can do is make an estimate that it takes somewhere around 100,000 years. Interestingly, this companion star, the little companion star that circles around Regulus is also a double star. The two stars, with the companion, take around 1,000 years to circle around each other.

Let us now move to the southern part of the sky. If you face south and look up, you can see in the early evening the Southern Cross. This is the best time to look at the Southern Cross, the most famous group of stars in the Southern Hemisphere. It is the best time to view it because it’s very high up in the sky, and it’s sort of standing vertically due south at this time of the year, in the early evening.

If we look at the Southern Cross, we can easily see four stars. There’s also a fifth star, which sadly is becoming lost to light pollution in our cities. If you’re looking at the Southern Cross from a dark sky, from a country spot for example, the fifth star is nice and prominent. However, if you look at this fifth star from the suburb of a major city, whether it’s Sydney or Melbourne or Adelaide or Perth, the fifth star in the Southern Cross is getting harder to see.

The bottom star of the Southern Cross, at least at this time of the year, is a star that we call Acrux, or alternatively, Alpha Crucis. This is the brightest star of the Southern Cross. If you look at Acrux through a small telescope, you can see that it’s actually a double star, or two stars. There is in fact a third star nearby as well. They’re about 320 light years from us. The light that we can see today left Acrux 320 years ago.

Going clockwise, the star on the left of the cross is a star called Beta Crucis, which also has a proper name, Mimosa. This is the second brightest star of the Southern Cross. Mimosa is a fairly hot star at a distance of 350 light years from us. It’s important to note that stars that appear close together in the sky, such as the stars of the Southern Cross, are not necessarily close together in reality.

The stars in the Southern Cross are a very good example. The stars are dispersed three dimensionally in the sky, they’re at different distances. From our own position, they make up the Southern Cross, they look like a cross. From anywhere else in the universe, or even anywhere else in our own galaxy, the stars will not appear like the Southern Cross. They will take up a completely different shape. It’s just from our own viewpoint, they take up this particular interesting configuration.

Going on, we have looked at Acrux and Beta Crucis or Mimosa. Now at the top of the cross there’s a star called Gamma Crucis. This is a relatively cool star so it has an orange colour. Unfortunately, our eyes are not sensitive to colour in the dark, so we don’t normally pick up the colour with the unaided eye. But if you colour photograph the Southern Cross then it’s quite obvious that Gamma Crucis has an orange colour. Its distance is 88 light years. In other words, it’s fairly close to us. It is the closest star of the five main stars of the Southern Cross.

Then going further clockwise, around the Southern Cross, the star on the right is Delta Crucis. It’s a hot star. It’s 364 light years from us. Below Delta, between Delta and Acrux, you’ll find the faintest star in the Southern Cross, Epsilon. From a city, as we discussed earlier, we may not be able to see Epsilon. Possibly, if you really know where it is, you might just be able to glimpse it. But it can be very hard to find because of light pollution. With a pair of binoculars, however, it is easy to find. Epsilon is, again, an orange coloured star like Gamma Crucis. It has a distance of about 230 light years.

Surrounding the Southern Cross, we find the constellation of Centaurus the Centaur. That constellation surrounds the Southern Cross on three sides, to the east to the left, above to the north, and to the right to the west. Centaurus, or the Centaur, represents a Greek legend of half horse half human creatures called centaurs.

These were very warlike and very quarrelsome creatures. Surprisingly, this particular centaur in the sky, next to the Southern Cross, is not like the rest of them. It represents a centaur known as Chiron who was known for his wisdom and his kindness. He was a teacher, and he taught the Greek heroes of antiquity, Jason and Hercules. He taught them subjects like music, poetry, and mathematics.

As a reward, he was placed by the king of the Greek gods, the gods of Greek mythology, Zeus, among the stars. Originally, the Southern Cross in Greek times was just part of the Centaur and represented the hind legs of the Centaur.

The two main stars of Centaurus are the two Pointer stars. The Pointer stars, which always point to the Southern Cross, are the ones which enable us to find and distinguish the Southern Cross from other nearby stars. You can always recognise the Southern Cross by these two Pointer stars. Out of the two Pointer stars, the one furthest away from the Cross in the sky is Alpha Centauri, also known by its Arabic name ‘Rigel Kentaurus’, which means ‘the Centaur’s foot’.

If you look at Alpha Centauri through a telescope, you can see it’s a double star, two stars really close together in the sky. In fact, they’re among the nicest objects to look at through a telescope. To me, the two stars appear like a pair of distant car headlights. These two stars circle around each other in about 80 years. They were furthest apart in 1995, and since then they’ve been coming closer together. The brighter of the two stars is very similar to our own Sun, while the faintest star is a somewhat orange coloured star. It’s a little bit less massive than our own Sun, a little bit cooler, but it’s a slightly larger star than our Sun.

There is a third star in the system which is known by astronomers as Proxima Centauri. We cannot see Proxima through a small telescope, it’s a long way away out of the field of view. It’s two degrees away from the other two stars. The two degrees represents four times the width of the full Moon, so it’s normally outside the field of view of a telescope. But there’s another reason we cannot see it: it’s very faint. It’s a little dwarf star. It gives off about 1/10,000 as much light as our own Sun.

The three stars of the Alpha Centauri system are at a distance of about 4.33, or 4 1/3 light years from Earth. That is, light left Alpha Centauri 4 1/3 years ago which is not that long ago, that is certainly within our own memory. This makes the three stars of the Alpha Centauri system the closest star system to Earth. But remember that Proxima’s just a little bit closer than the other two. Proxima is in fact the closest star to us after our own Sun. This star was only discovered relatively recently. It was discovered in 1915 by an astronomer called R.T. Innes, Robert Innes. He was an ex Sydney astronomer who moved to South Africa and made the discovery while he was working there.

The other star of the two Pointers is Beta Centauri. That is the one that appears close to the Cross in the sky and is much further away from our own Sun. It’s 525 light years away, once again, demonstrating that two stars that appear to be close together in the sky can be a very large distance apart in reality.

Beta Centauri is a very hot massive star giving off something like 10,000 times as much light as our own Sun. Through a telescope, you can see that it’s a double star. There is a faint star associated with the main primary star. This faint star is still 400 times as bright as our own Sun.

Finally, before we wrap up this view of the stars in July, I’ll mention another object in the constellation of Centaurus, an object called Omega Centauri that is known affectionately to astronomers as Omega Cen. This is a globular cluster, a huge ball of several million stars. It is believed to contain five to 10 million stars. This ball of stars circles independently around the centre of our own galaxy. It’s the most massive, with 160 or so globular clusters of similar balls of stars, that we know about here in our own galaxy, the Milky Way.

At a distance of 16,000 light years, it is relatively close to us, at least for a globular cluster. It’s only visible from the Southern Hemisphere, and it is a very nice subject to study. It circles around the centre of our own galaxy in the opposite way to stars, which suggests that it has a rather interesting history. It has been suggested that it’s a remnant of a small galaxy that was swallowed a few billion years ago by our own galaxy, the Milky Way. It’s the remnant of a very central part, or the nucleus of a small galaxy, and we can see it as the globular cluster, Omega Centauri.

Omega Centauri is visible to the naked eye from a dark sky, but from the city, it can still be easily seen if you look at it through a pair of binoculars. Back in 1985, when Halley’s Comet was nearing the Earth, before its close approach the following year, it passed right by Omega Cen. The comet looked exactly like Omega Cen, and a lot of people at the time saw the two of them in their binoculars and thought that Halley’s comet had split into two. No, it did not.

Now, let us turn to the special events and the position of the planets in July 2013.

This month on 6th July, the Earth is at aphelion. This means that the Earth is at its furthest distance from the Sun. The exact instant it takes place is 12.44am, so very early in the morning.

This does not mean that that’s the reason why we have winter but it does mean our winters are a little bit colder than they would be otherwise, and they’re also a little bit longer than they would be otherwise because the Earth in the middle of the southern winter is at its furthest distance from the Sun.

There is quite a lot of planets to look at in the evening sky. At the beginning of the month we can see the elusive planet Mercury. It’s elusive because it never gets too far above the horizon. We can see it very low in the north-west sky for a day or two at the beginning of the month after which it disappears into the twilight and the sky becomes too bright for us to see the planet.

We can see the planet Venus, the brightest of all the planets, and Venus is, of course, the third brightest object in the sky after the Sun and the Moon.

So we can see Venus low in the north-west sky each evening. On 10th July a thin crescent moon is below and to the left or west of the planet. Of course, having the thin crescent moon close to the brightest planet is always a spectacular sight. It takes place roughly once a month, and it’s always worth looking at.

A little bit later in the month, on 22nd and 23rd July, Venus passes close to the bright star Regulus, the brightest star in the constellation of Leo the Lion.

The ringed planet, Saturn, is also visible. It’s high in the northern sky, and it’s to the right or east of the bright star, Spica. And Spica is the brightest star in the constellation of Virgo, the Maiden.

On 16th July, the first quarter moon is above and to the left of or west of Saturn. Again, as in previous months, having the Moon near Saturn does provide the opportunity to identify Saturn with the unaided eye – just to be sure that we are looking at the correct object.

And for those people with a small telescope, Saturn is a magnificent object to look at because of its rings.

Those people who rise early can see a few planets in the morning sky before dawn, before it starts brightening with the approaching sunrise.

The planet Mercury which was visible at the very beginning of the month in the evenings reappears in the morning sky low in the north-east, during the second half of the month.

The planet Mars is low in the north-east. On 6th July, a thin crescent moon is above and to the left or north of the red planet.

Then later in the month, from 21st July, Jupiter can be seen two moon-widths or less from Mars.

And Jupiter, the bright planet – not quite as bright as Venus, but still, a very bright planet – appears low in the north-east sky during the second week of the month.

This completes the guide to the sky and the planets for July 2013. If you’d like to know more about what’s in the night sky, and to know in advance of the podcast, so you can know what’s happening for all year, you can purchase the ‘Australasian sky guide’. This publication is prepared by myself each year, and it’s available from Sydney Observatory and the Powerhouse Museum, and also from good bookshops throughout Australia and New Zealand for what I consider an inexpensive price of $16.95.

You can also order it online through the Powerhouse Museum website or the Sydney Observatory website but of course there are some postage costs involved as well.

With regard to the monthly sky guide podcasts, you can listen to it through the Observatory website, www.sydneyobservatory.com.au/ – it’s in [the Monthly Sky Guide section of] the Astronomy section.

There, of course, you can also look at the blog. There are regular updates on what’s happening in the night sky and other astronomical information on the Sydney Observatory blog.

You can also subscribe to the podcast through iTunes.

My name is Nick Lomb, and this completes our guide to the night sky in July 2013.

Leave a Reply

5 Responses to “July 2013 night sky guide podcast, transcript and sky chart”

  1. June 30, 2013 at 2:25 pm, abhishek said:

    hi nick , loved your write up ! it is quite easy and interesting to read . i live in india , 20 degree 8 minutes north . hope u continue your good work , thanks !

    Reply

  2. June 30, 2013 at 2:15 pm, abhishek said:

    omega cen can be seen from north hemisphere too . i live at latitude 20 degree 8 minutes , but i can see it with my very ordinary 10×50 binocular . thanks….

    Reply

    • July 02, 2013 at 12:12 pm, Nick Lomb said:

      Hello abhishek. Thanks for your comments. Yes, you can see Omega Cen from your northern latitude, but it only reaches 22° or so above the horizon at best. Similarly, you can get a good view of northern hemisphere objects such as the Andromeda Galaxy M31, while we in the southern hemisphere are lucky if we can glimpse them for short periods each year low in the sky.

      Reply

      • September 09, 2013 at 3:39 am, Gail said:

        > why do we not see the stars at night in the area of Greece

        Reply

        • September 10, 2013 at 12:17 pm, Nick Lomb said:

          Hello Gail. The stars are there each night above any place on Earth. They can be flooded out though by too much light, called light pollution by astronomers, from badly designed street lights, advertising signs and other decorative lighting in cities.

          Reply

Search

About

The 'Observations' blog is run by the staff of Sydney Observatory which is located at Observatory Hill, The Rocks, in Sydney, Australia.

This site is for discussion purposes only and does not represent the official views of Sydney Observatory. Any views expressed on this website are those of the individual post author only. Sydney Observatory accepts no liability for the content of this site.

Please direct any correspondence about the content of the blog to:
observatory [at] phm.gov.au
and about web matters to:
web [at] phm.gov.au.